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Abstract. The equation of motion of an electron undergoing cyclotron emission in a uniform 
magnetic field is considered. A solution for the orbit is obtained in a fairly simple form 
for relativistic velocities. The conflict of basic conservation laws, as noted previously, is 
no longer evident in the present treatment. Difficulties in earlier works have arisen because 
the deviation of the electron orbit from circularity was not estimated properly. As particular 
consequences of the more complete theory, it is shown that ( i )  when the fractional energy 
loss per cycle approaches unity there are significant changes in the particle orbit, and (ii) 
when the fractional energy loss per pulse (or beam) crossing approaches unity, the radiation 
characteristics also exhibit modifications. 

1. Introduction 

The conflict of basic conservation laws in cyclotron radiation theory was addressed in 
previous literature (Lieu et a1 1983, Das Gupta 1984). In a recent work (Lieu et a1 
1987) we suggest that the controversy can be settled by a careful consideration of the 
balance of energy, momentum and angular momentum when the two-body system of 
an electron and a source of magnetic field emits a photon. The idea was hinted at in 
an earlier paper (White and Parle 1985) which studies the effects of recoil on the 
electron orbit. At present we explore some of the consequences of radiation reaction 
in cyclotron physics. The mathematical computations assume particularly simple forms 
in non-relativistic and ultra-relativistic limits. Our concern is in the latter, because 
little observable significance is expected for low electron velocities. 

2. Equation of motion and its solution 

The equation of motion of an electron in a homogeneous and static magnetic field is 
given, in 4-vector notation, by 

where 

FFId = (0, yu x B )  

0305-4470/87/092405 + 09$02.50 @ 1987 IOP Publishing Ltd 2405 



2406 R Lieu 

(see Jackson 1975, Rohrlich 1965). I t  is sufficient to work exclusively on the three 
spacelike components of this equation, namely 

Exact solution of (1) is clearly intractable. Here we employ a perturbation method. 
More explicitly, ( i )  the zeroth-order approximation solves for the electron orbit in the 
absence of radiation, and (ii) the first-order approximation uses such an orbit to 
calculate the radiation reaction, which will be substituted in (1) to obtain a more 
accurate parametrisation of the particle’s trajectory. It is obvious that the scheme can 
be applied iteratively, yielding a progressively better representation of the truth. It 
would also become evident that the first-order approximation is quite sufficient for 
dealing with a wide range of field strengths and particle energies. 

In the absence of radiation, the equation of motion (1) is 

dp/dt  = ev x B. ( 2 )  

The solution of (2) yields circular motion in the XY plane (the plane taken to be 
perpendicular to the magnetic field). More precisely, (2) implies 

d E  -- - constant -0  -- dPZ 
d t  d t  

where U ,  = eB/ me is the cyclotron frequency. 

z direction, leads to the following differential equations: 
Substituting the above radiation reaction terms in ( l) ,  and ignoring motion in the 

where a = 2e2wz /3mec3  and y = (1 - u ~ / c ~ ) - ” ~ .  Solution of ( 3 )  then gives the first-order 
approximation to the electron orbit. 

We proceed by first noting that ( 3 )  estimates the energy loss rate to radiation as 

d E  dp 
-- -u t , ‘ -=  -meay2v2= -meac2(y2- 1) 
d i  dt 

or, equivalently, 

dy  ay2v2 -- - - a (y2 -  1). 
d t  C2 (4) 

Equation (4) may be solved rather trivially for relativistic energies (i.e. y >> 1). We have 

y( t )  = (a r+p ) - ’  ( 5 )  
where /3 = l / y ( t  = 0) = l/y,,. We now rewrite ( 3 )  by using the relations 

_- dp.v- m,y-+m d U, u - dY 
dr dr e “ d r  
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etc, and d y / d t  from (4): 

In the limit of high y we may recast the above equation by means of ( 5 ) :  

- -Uc(  at + p )  U, - a ( a t  + p ) U, d U, 
d t  
_- 

9 = w,  ( at + p ) U, - a ( at + p ) U,, 
d t  

A formal solution to (6) is 

u , ( t )  = c exp[-;(at+pj’] cos[(wc/2a j (ar+p)’]  

u , ( t )  = c exp[-f(at+p)’] sin[(wC/2a)(at+p)’]. 

This is a solution of the original differential equation (3)  to order l / y2 .  In fact, 
with the same degree of accuracy the exponential function may also be written as 
[ 1 - ( ~ 2 t + P ) ~ / 2 ] ,  so that we have 

u x ( t ) = c [ l  - ; (ar+p)2]  cos[(w,/2a)(at+p)2]  

u y ( t )  = c[l -f(at+p)’] s in[ (wc/2a) (a t+~)’ I .  
The initial conditions implicit in ( 7 )  are 

U, = U0 cos 40 (8) 
where U:= c’(1- 1 /y i )  and 40=wc/2ayi .  It is important to recognise d 0 / r  as the 
inverse of the fractional energy loss per cycle at t = 0. The initial conditions on the 
particle velocity may be altered by introducing a phase term in the argument of 
the trigonometric functions in (7). 

Temporal evolution of the electron position is now obtainable by integration of 
(7), assuming the initial condition (8). Thus 

(7) 

U, = uo sin & 

x ( t ) = c  lof c o s ( z ( a r ‘ + p ) 2  (9) 

and a similar expression for y (  t ) .  None of the integrals can be written in closed form, 
but considerable insight is gained by a change of variables to 

w , ( a r + P ) ’  
4 =  2 a  

in which case (9) becomes 

The initial conditions for the solutions (10) are x = 0, y = 0 at t = 0. 
Temporal evolution of the instantaneous guiding centre is given by 

where y ( t ) ,  u ( t )  and r ( t )  are assembled from (9, ( 7 )  and (10). 
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3. Orbit characteristics 

To examine some gross properties of the decaying electron orbit, we may remove the 
a / w c  term in the integrand of (10) :  this leaves an error of 1/ y z  which is quite irrelevant. 
Equation (10) then becomes 

x ( t )  = c ( 2 a w c ) - ’ / 2  (I,-’/2 cos (I, d$ 

y (  t )  = c(2awc)- ’ ’2  (I,-’”sin (I, d$, 

The integrals are complex error integrals (Gradshteyn and Ryzhik 1965). In fact, the 
electron trajectory resembles a ‘Cornu spiral’ well known in diffraction optics. The 
behaviour in the domains of low and high emission rates are very different and it is 
best to address them separately. 

(I)  If in (10) we start with a lower limit of integration 4o >> 1, i.e. if the fractional 
energy loss per cycle is initially small, then (10) may be replaced by an asymptotic 
series. More specifically, successive integrations by parts yield the following equations: 

+. . .)I +. . .) -(=-- sin 4 cos 4 sin 4o cos 4o 

(11) 
cos 4 sin $J cos$Jo s in4,  

y (  t )  = -c(2awc)- ’ /2  [ (F + - - e .  243/2 .) -(-p+m- 
If we retain only the highest order (4-’12) terms in each series, and consider short 
durations T around the epoch t ,  (11) may be simplified to become 

( 1 2 )  

where w o  = w,(cr t+P)  = wc/  y and E = w c / 2 a y 2 .  The motion now appears instan- 
taneously circular. The constants (xo, yo) ,  given by 

C C 

WO WO 
x( 7) = xo+- sin( w07 + E )  y (  7 )  = Y O  -- COS(UoT+ E )  

determine the guiding centre position. They are equivalent to the value of the coordin- 
ates at t = 0, meaning that the guiding centre does not move during radiation. 

(11) The situation opposite to ( I )  is when 40<< 1 at t = 0, i.e. fractional energy loss 
per cycle is initially large. The electron trajectory is then a complex spiral and the 
guiding centre drifts rapidly. Most results are unavailable in analytic (closed) form, 
but numerical computations provide some appreciation of the behaviour (see figures 
1 and 2) .  However, the system settles down within a short fraction of its initial period 
and the steady state values of various parameters are relatively easy to calculate. We 
simply require the upper limit of integration in (10) to be large, i.e. 4 ( t )  >> 1. The 
technique is to express ( 1 0 )  in the form 

and similarly y ( 0 .  Here 5 is some suitable intermediate limit such that 5 >> 1 but 
4( t ) .  The first term in (14) is then merely a constant and the second term describes 
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Figure 1. The orbit of an electron of initial Lorentz factor 5 x lo6 entering a magnetic field 
H = 2 x lo6 G. At time f = 0 the particle is at the origin (0, O), the point of entry. Positions 
marked 1 , 2 , 3 , .  . . , 10 correspond to times w,t = 0.01,0.02,. . . ,0.10 where w ,  = w c / y o  is 
the initial angular frequency of rotation. The unit of distance is the metre. 

instantaneous circular motion. In fact, (12 )  still holds with the constants replaced by 

Strictly speaking, the lower limit of integration in ( 1 5 )  should be 40. But for small 
4o it is a good approximation. This means the relative position of the final guiding 
centre is independent of electron initial energy, but depends only on the magnetic field 
via the integral coefficients. Bearing in mind that the guiding centre would have 
remained in the position given by (13 )  had there been no radiation damping, ( 1 5 )  
indicates a significant particle drift motion caused by radiation. 

4. Power spectrum and radiation rate 

A key observable consequence of radiation reaction effects is the deviation of the 
power spectrum from that of conventional synchrotron emission. To calculate this, 
we consider a scenario similar to that of figures 1 and 2 ,  namely an electron with 
velocity U = ( uo, 0) entering a region of magnetic field at x, y ,  t = 0. The subsequent 
configuration is given by 

u , ( t )  = c [ l  - $ ( a t + p ) ' ]  cos($aw,t2+w,pt) 
u , ( t )  = C[I   a at+^)^] sin(fawct2+wcpt). 

( 1 6 ~ )  
(166)  

Equation (16 )  is just a variation of ( 7 )  with a phase term added to the trigonometric 
functions to meet the required initial conditions. For a very brief moment after t = 0 
the electron releases most of its energy in a single pulse and its trajectory is non-circular. 
The azimuthal angle for U in (16 )  is, for finite values of it, the inverse of the fractional 
energy loss per cycle. This means, when the particle begins to turn, it is no longer 
radiating significantly. 

The main concern, therefore, is in the frequency distribution of the very bright 
pulse which an observer stationed somewhere along the positive x axis would see when 
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Figure2. Guiding centre position as a function of w o f  for a condition identical to that 
described in figure 1.  The unit of distance is the metre. 

the particle enters the field region. It is then only necessary to consider short time 
intervals from r = 0. In addition we concentrate on emission in the orbital plane 0 = 0. 
Following the notation in Jackson's treatment of synchrotron radiation (Jackson 1975), 
the differential power radiated is given by 

dw d'l d f l  - 4.rr'c3 e 2 u 2  ( n  x n  x U )  exp[iw( [-?)I drl '  

where n is the position vector of the observer. The quantities r ( t )  and u ( t )  in (17) 
are now obtained by an  expansion of (16) for small times: 

x ( t ) =  U J - c  ( -+-+- a;t2 "4" y o w ~ a t 4 +  y & i a 2 t 5 )  
8 40 
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where w o =  w , / y o ,  and likewise expressions for u y ( t ) ,  y ( t ) .  The omitted terms in the 
expansion of (18) are of order y i  less than those kept. In fact (18 )  is valid so long as 
wot << 1 .  When yo is large, results are correct for the most important range of frequencies. 

We continue along the lines of Jackson and define the variables 

x = yowot r$ = w / 3 y : w o .  
Combining (17 )  and ( 1 8 )  we have 

e 2 w 2  I [: (x+$) e x p [ i r $ ( $ x + $ p x 2 + f x 3 + $ p x 4 + & p 2 x 5 ) ]  dx 
d2 Z -- 

dw di2 - 477*w:y:c 

where p = a / w 0  = y o a / w , .  The quantity p is, in fact, the fractional energy loss during 
pulse crossing. For substantial modification to the spectrum, we require p 2 1. In 
other words, the electron must assume a non-circular orbit when the pulse transits an 
observer. Since p is a critical parameter, it is written in the following form for easy 
reference: 

p = 1 . 1  x 10-'6yB 

where B is measured in gauss. 
Figures 3 and 4 show power spectra for synchrotron radiation for the cases p = 0.001 

and p =0.2, and how they compare with the conventional spectrum which assumes 
no damping effects. For p = 0.001 the only noticeable difference is a depletion at low 
frequencies. For p = 0.2, the entire spectrum falls below the conventional half-pulse 
emission curve, and this is because the electron energy decreases appreciably even 
within a pulse duration. 

The total rate of energy loss to synchrotron radiation is obtained by substituting 
the improved electron orbit ( 3 )  and ( 4 )  in the formula for radiated power: 

'" I 

2 
IO-' 10- 5 1( 

Normnised frequency 
I 

Figure 3. Power spectrum of synchrotron radiation for an electron injected into a region 
of strong field. Only the initial 'half-pulse' when the particle velocity vector crosses the 
observer's line of sight (positive x axis) is considered. The lower curve corresponds to a 
0.1% energy loss in the event. No significant differences in the spectra are noted for 
(3 lo-' ( 5  is the normalised frequency, see text). 
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Figure4. As in figure 3, with the exception that 20% of the initial electron energy is lost 
to radiation within the initial pulse transit time. Also included in this diagram is the 
steady-state 'full-pulse' spectrum, computed on the assumption that, in the absence of 
radiation damping, the particle returns to the observer, i.e. the synchrotron beam makes 
a complete sweep. ---, full pulse, no damping; ---, half-pulse, no damping; - 
half-pulse, f i  = 0.2. 

This gives the result 

P = m,cyc2( y 2  - 1)( 1 + p2). 

When compared with (4), it is evident that first-order perturbation estimates an increase 
in emission rate by a factor (1 + p'). 

5. Limitations of the theory 

The calculated orbit and radiation characteristics are subject to further modifications 
in situations of high-energy loss. It is therefore important to investigate the criterion 
of validity of first-order perturbation theory. Here it is simply stated, without details 
of proof, that higher-order corrections to the electron orbit carry terms of order p", 
where n 2 2, in the differential equations for dp/dt. The additional terms introduced 
in (17)-(19) then fall short of the existing terms by a factor B1/p2. Hence for small 
II. the results presented are reliable. As p approaches unity, the successive high orders 
take their place. For p > 1, the perturbation method cannot be used. 
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